A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm.

نویسندگان

  • C Pasquier
  • V J Promponas
  • G A Palaios
  • J S Hamodrakas
  • S J Hamodrakas
چکیده

We present a novel method that predicts transmembrane domains in proteins using solely information contained in the sequence itself. The PRED-TMR algorithm described, refines a standard hydrophobicity analysis with a detection of potential termini ('edges', starts and ends) of transmembrane regions. This allows one both to discard highly hydrophobic regions not delimited by clear start and end configurations and to confirm putative transmembrane segments not distinguishable by their hydrophobic composition. The accuracy obtained on a test set of 101 non-homologous transmembrane proteins with reliable topologies compares well with that of other popular existing methods. Only a slight decrease in prediction accuracy was observed when the algorithm was applied to all transmembrane proteins of the SwissProt database (release 35). A WWW server running the PRED-TMR algorithm is available at http://o2.db.uoa. gr/PRED-TMR/

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel tool for the prediction of transmembrane protein topology based on a statistical analysis of the SwissProt database: the OrienTM algorithm.

OrienTM is a computer software that utilizes an initial definition of transmembrane segments to predict the topology of transmembrane proteins from their sequence. It uses position-specific statistical information for amino acid residues which belong to putative non-transmembrane segments derived from statistical analysis of non-transmembrane regions of membrane proteins stored in the SwissProt...

متن کامل

ارائه یک رویکرد فازی برای بهینه‌سازی پیش‌بینی سری زمانی با مرتبه بالا

It is difficult to apply the real world’s conceptions due to their uncertainty. Generally, time series are known to be non-linear or non-stationary. Regarding these two features, a system should be sensitive enough to apply the unity of time series and repeat this sensitiveness in the prediction. A predict system can exactly scrutinize the hidden features of time series and also can have high p...

متن کامل

A hierarchical artificial neural network system for the classification of transmembrane proteins

This work presents a simple artificial neural network which classifies, from their sequences alone, proteins into classes: the membrane protein class and the non-membrane protein class. This is important in the functional assignment and analysis of Open Reading Frames (ORF) identified in complete genomes and, especially those ORF’s that correspond to proteins with unknown function. The network ...

متن کامل

An hierarchical artificial neural network system for the classification of transmembrane proteins.

This work presents a simple artificial neural network which classifies proteins into two classes from their sequences alone: the membrane protein class and the non-membrane protein class. This may be important in the functional assignment and analysis of open reading frames (ORF's) identified in complete genomes and, especially, those ORF's that correspond to proteins with unknown function. The...

متن کامل

Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method.

Helices in membrane spanning regions are more tightly packed than the helices in soluble proteins. Thus, we introduce a method that uses a simple scale of burial propensity and a new algorithm to predict transmembrane helical (TMH) segments and a positive-inside rule to predict amino-terminal orientation. The method (the topology predictor of transmembrane helical proteins using mean burial pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering

دوره 12 5  شماره 

صفحات  -

تاریخ انتشار 1999